Lithium ionic conduction and relaxation dynamics of spark plasma sintered Li5La3Ta2O12 garnet nanoceramics

نویسنده

  • Mohamad M Ahmad
چکیده

In the present work, nanoceramics of Li5La3Ta2O12 (LLT) lithium ion conductors with the garnet-like structure are fabricated by spark plasma sintering (SPS) technique at different temperatures of 850°C, 875°C, and 900°C (SPS-850, SPS-875, and SPS-900). The grain size of the SPS nanoceramics is in the 50 to 100 nm range, indicating minimal grain growth during the SPS experiments. The ionic conduction and relaxation properties of the current garnets are studied by impedance spectroscopy (IS) measurements. The SPS-875 garnets exhibit the highest total Li ionic conductivity of 1.25 × 10(-6) S/cm at RT, which is in the same range as the LLT garnets prepared by conventional sintering technique. The high conductivity of SPS-875 sample is due to the enhanced mobility of Li ions by one order of magnitude compared to SPS-850 and SPS-900 ceramics. The concentration of mobile Li(+) ions, n c, and their mobility are estimated from the analysis of the conductivity spectra at different temperatures. n c is found to be independent of temperature for the SPS nanoceramics, which implies that the conduction process is controlled by the Li(+) mobility. Interestingly, we found that only a small fraction of lithium ions of 3.9% out of the total lithium content are mobile and contribute to the conduction process. Moreover, the relaxation dynamics in the investigated materials have been studied through the electric modulus formalism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of novel Li-stuffed garnet-like Li5+2xLa3Ta2-xGdxO12 (0 ≤ x ≤ 0.55): structure-property relationships.

In this article, we report the preparation and characterization of novel Li-stuffed garnets Li5+2xLa3Ta2-xGdxO12 (0 ≤ x ≤ 0.55) for all-solid-state Li ion batteries. The conventional solid-state method was used to prepare Li5La3Ta2O12 in air at 1200 °C and Li5+2xLa3Ta2-xGdxO12 at 1150 °C. Rietveld refinements for the powder X-ray diffraction (PXRD) patterns confirmed the formation of a cubic ga...

متن کامل

Grain growth kinetic of spark plasma sintered magnesia

In this research, the densification of magnesia nanopowder with a mean particle size of about 100 nm was investigated by spark plasma sintering undera pressures of 80 MPa and at temperature range from 1000 °C to 1400 °C and a heating rate of 50 °C/min for 20 minutes. The density of the samples slowly increased with increasing sintering temperatures to 1200 °C. Afterwards, with more increasing o...

متن کامل

Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte.

Epitaxial thin films of Al-doped Li7La3Zr2O12 (LLZO) with a cubic garnet-type structure were successfully synthesized using pulsed laser deposition to investigate the lithium ion conduction in grains. Two orientations of the films were obtained depending on the Gd3Ga5O12 (GGG) substrate orientation, LLZO(001)/GGG(001) and LLZO(111)/GGG(111). The ionic conductivities in the grains of the (001) a...

متن کامل

IN SITU FABRICATION OF Al 2024-Mg2Si COMPOSITE BY SPARK PLASMA SINTERING OF REACTIVE MECHANICALLY ALLOYED POWDER

In situ Al2024- Mg2Si composite was fabricated by spark plasma sintering (SPS) of reactive powder. Reactive powder was obtained from mechanical alloying (MA) of elemental powders. Clad layers of in situ composite were fabricated on Al substrates by spark plasma sintering (SPS). Structural evolution during MA process and after SPS was investigated by X-ray diffractometery (XRD). Scanning electro...

متن کامل

Solid state sintering of very low and negative thermal expansion ceramics by Spark Plasma

Lithium aluminosilicate powder precursors of compositions Li2O:Al2O3:SiO2 as 1:1:2; and 1:1:3.11 were synthesized and sintered by the Spark Plasma Sintering technique. The sintering conditions were adjusted to obtain dense ceramic materials in an attempt to avoid the presence of a glassy phase. XRD and SEM images were employed for composition and microstructure characterization. The coefficient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015